Nd³⁺掺杂无序晶体被动锁模激光器的研究现状

何坤娜1,2 李德华2 魏志义2*

1中国农业大学理学院,北京 100083

²中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190

摘要 全固态激光器被动锁模是产生超短脉冲的一种有效方法。在基于 Nd³⁺掺杂激光材料被动锁模产生超短脉冲的研究中,无序晶体成为研究的热点。结合相关工作,总结了 Nd³⁺掺杂无序晶体被动锁模激光器的研究现状,展望了 Nd³⁺掺杂无序晶体在超强超短脉冲制备中的发展前景。

关键词 激光器;Nd³⁺掺杂无序晶体;四能级激光运转;准三能级激光运转;被动锁模激光器

中图分类号 TN248 **文献标识码** A

doi: 10.3788/CJL201643.1000001

Research Status of Passively Mode-locked Laser Based on Nd³⁺-doped Disordered Crystals

He Kunna^{1,2} Li Dehua² Wei Zhiyi²

¹College of Science, China Agricultural University, Beijing 100083, China ²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract An effective way to realize an ultra-short pulse is to use the passively mode-locked technology of all-solid-state lasers. Among the studies on the passively mode-locked Nd^{3+} -doped lasers, the disordered crystals have been becoming a research hotspot. In combination with related works, the research status of passively mode-locked lasers based on Nd^{3+} -doped disordered crystals are summarized, and the future prospect on the application of Nd^{3+} -doped disordered crystals in the generation of ultra-short and ultra-intense pulses is discussed.

 $\label{eq:keywords} \mbox{ lasers; Nd^{3+}-doped disordered crystal; four-level laser operation; quasi-three-level laser operation; passively mode-locked lasers$

OCIS codes 140.3380; 140.4050

1 引 言

超短脉冲具有短脉宽、高峰值功率等特点,在许多领域有着重要的应用。全固态激光器被动锁模(ML) 是产生超短脉冲的一种有效方法。一般情况下,激光材料的荧光谱越宽,通过锁模产生的脉宽就越短。除钛 宝石晶体外,掺 Yb³⁺和掺 Nd³⁺的激光材料是目前常用的两大类可产生超短脉冲的激光材料。基于 Yb³⁺掺 杂的激光器输出激光波长相对单一,主要集中在1.03 μm左右,且激光器运转于准三能级系统。基于 Nd³⁺掺 杂的激光器通常可输出 1.06,1.3,0.9 μm 左右的激光波长,在许多方面具有不可替代的优势。目前,基于 Nd³⁺掺杂的锁模超短脉冲激光已广泛应用于多个领域。

2002年,Han 等^[1]利用 Nd:glass 获得了38 fs 的锁模脉冲输出,这是目前利用 Nd:glass 材料获得的最 短脉宽。但 Nd:glass 的热导性较差,目前基于 Nd:glass 的被动锁模振荡器的输出功率一般只有几十毫

基金项目:国家自然科学基金国际合作与交流项目(61210017)、国家重点基础研究发展计划(2013CB922402)、中央高校基本科研业务费(2016lx002)

作者简介:何坤娜(1976—),女,博士,讲师,主要从事新型激光器件与技术方面的研究。E-mail: hekunna@cau.edu.cn * 通信联系人。E-mail: zywei@aphy.iphy.ac.cn

收稿日期: 2016-05-31; 收到修改稿日期: 2016-07-07

瓦^[2-5],且实验装置非常复杂。无序晶体具有晶体的高导热性能和玻璃的宽荧光谱,且适合二极管激光抽运,因此,在利用 Nd³⁺掺杂激光器被动锁模产生超短脉冲的研究中,Nd³⁺掺杂无序晶体已成为研究热点。

Ober 等^[6-7]借助加成脉冲锁模(APM)技术,利用 GSAG:YSGG:Nd³⁺无序晶体分别获得了 500 fs 和 260 fs 的超短脉冲输出。但 APM 技术所用的干涉装置的内部结构非常复杂,因此,随着锁模技术的发展, APM 技术不再是人们利用无序晶体获取超短脉冲时首选的锁模技术。

在基于 Nd³⁺掺杂无序晶体的激光器实现激光运转时,常见的输出谱线主要有三条。以 Nd:CLNGG 激 光器为例,波长分别为 1.06^[8],1.3^[9],0.935 μm^[10],其中 1.06 μm 和 1.3 μm 是激光器实现四能级运转时输出 的激光波长,0.935 μm 是激光器实现准三能级运转时输出的激光波长。本文结合本课题组在这方面的研究 工作,对基于 Nd³⁺掺杂无序晶体的全固态被动锁模激光器的相关研究进展进行了介绍。

2 被动锁模实现 1 μm 激光输出

目前已研制生长出多种 Nd³⁺掺杂无序激光晶体,并对它们进行了广泛的研究,表 1 为近年报道过的一些 Nd³⁺掺杂无序晶体与典型 Nd³⁺掺杂有序晶体及 Nd:glass 的特性比较结果^[8,11-26]。

表 1	Nd ³⁺	掺杂无用	室晶体	与其他	激光材	料的特性	比较
-----	------------------	------	-----	-----	-----	------	----

т, <u>1</u>	Absorption	Fluorescence	Thermal conductivity /	Reference No.	
Laser material	bandwidth /nm	bandwidth /nm	$(\mathbf{W} \boldsymbol{\cdot} \mathbf{m}^{-1} \boldsymbol{\cdot} \mathbf{k}^{-1})$		
Nd:CNGG	12	15.1	4.7	[8,11-12]	
	8.5	14.7	3.43		
Nd:CLNGG	13	16.6	2.97	[8]	
Nd:CLTGG	-	16	-	[13]	
Nd:CYA	5°	12^{σ}	-	[14]	
	5*	15*	-		
Nd:CGA	3.3	12	-	[15-16]	
Nd:CGB	15^{1}	30 ¹	0.849 ^a	[17]	
	15^{II}	30 ¹¹	0.887 ^b		
	16 ^{III}	30 ¹¹¹	0.841°		
Nd: CLB	17	27	$1.08 \sim 1.30^{a}$	[18]	
			$1.12 \sim 1.45^{b}$		
			$1.03 \sim 1.35^{\circ}$		
Nd: SGG	18	24	1.59ª	[8]	
			1.4°		
Nd: SLG	8	14	1.95 ^a	[8]	
			1.7°		
Nd: BLG	15	27	1.96ª	[8]	
			1.72°		
Nd:LGS	Nd:LGS 5 10.2		1.7°	[19]	
			1.4ª		
$Nd, Y: SrF_2$	4	15.5	3.5	[20]	
$Nd, Y: CaF_2$	>10	31	9.7	[21-22]	
Nd, La: CaF2	>5	>15	-	[23]	
Nd : YAG^H	2.1	0.5	11.1	[12,24]	
Nd : YVO_4^H	2	1.1	5.1	[18,24-25]	
Nd : $GdVO_4^H$	1.6	1.25	11.7	[24-25]	
Nd:glass ^P	12.7	21.3	0.6	[12,26]	

Table 1 Characteristic comparison between Nd³⁺-doped disordered crystals and other laser materials

H: ordered crystals; P: disordered crystals; σ and π : pump laser polarization directions; a, b and c: directions of crystallographic axis; I, II, and III: electric field along a-axis, b-axis, and c-axis of laser material

以 Nd: YAG, Nd: YVO₄和 Nd: GdVO₄为代表的 Nd³⁺掺杂有序晶体的荧光谱宽在 1 nm 左右, 而 Nd³⁺ 掺杂无序晶体的谱线宽度在 5~31 nm 之间, 远远大于有序晶体谱线宽度, 与 Nd: glass 的荧光谱宽相当, 甚 至更宽; 无序晶体的吸收谱宽在 3~15 nm 之间, 大于以 Nd: YAG、Nd: YVO₄和 Nd: GdVO₄为代表的有序 晶体的吸收谱宽(约 2 nm)。图 1^[19]和图 2^[21]为两种典型的无序晶体 Nd: LGS 和 Nd, Y: CaF₂的吸收谱和荧 光谱。

图 1 Nd:LGS 晶体的(a)吸收谱和(b)荧光谱^[19]

图 2 Nd, Y: CaF2 晶体的(a)吸收谱和(b)荧光谱^[21]

Fig. 2 (a) Absorption and (b) fluorescence spectra of Nd, Y:CaF₂ crystal^[21]

近年来,基于 Nd³⁺ 掺杂无序晶体的 1 μm 超短脉冲激光器的研究取得了令人瞩目的成果,具体情况参见表 2^[11,13,14,16,20-23,27-38]。

表 2 基于 Nd³⁺ 掺杂无序晶体的 1 μm 被动锁模实验结果列表

Laser material	Pump source	Dispersion compensation element	Laser wavelength / nm	Pulse width /ps	Repetition frequency / MHz	Output power / mW	Efficiency	Reference No.
Nd , Y : SrF_2	Ti	GTI mirror	1061	0.097	96	102	11% A	[27]
	Ti	GTI mirror	1057	0.332	89.8	395	39.5 % A	[20]
							69 % ^B	
Nd , Y : CaF_2	LD	Prism pairs	1064	0.103	100	89	$26 \frac{0}{10} \text{ A}$	[21]
	LD	GTI mirror	1061	0.264	85	180	7.2 [%] D	[22]
Nd:LGS	Ti	Prisms pairs	1084	0.278	102.4	21	0.8% A	[28]
	Ti	Prisms pairs	1067.5	0.335	102.4	47	1.8½ A	
	LD	Prisms pairs	1066	0.381	133.4	75	1.3½ A	[29]
	LD	No	1063	10.9	173.7	28.5	1.5% A	[30]
Nd:BLG	Ti	One prism	1075	0.290	200	30	-	[31]
			1060	0.316	200	-	-	
			$1070 \sim \! 1090^{t}$	< 1	200	-	-	
$Nd: SLG^M$	Ti	One prism	1061	0.378	201	33	-	[32]

Table 2 Result list of 1 µm passively mode-locking experiments based on Nd³⁺-doped laser materials

中 国 激 光

								续表 2
Laser material	Pump source	Dispersion compensation element	Laser wavelength / nm	Pulse width /ps	Repetition frequency / MHz	Output power / mW	Efficiency	Reference No.
			$1060 \sim \! 1063^{t}$	-	201	-	-	
Nd : SLG^N	Ti	One prism	$1067\!\sim\!1070^{t}$	0.534	201	25	-	
			$1078 \sim \! 1083^{t}$	0.660	201	16	-	[22]
Nd:CNGG-CLNGG	LD	Prisms pairs	1061.5	0.534	88	60	1 % A	[33]
Nd:CLNGG	LD	Prisms pairs	1061	0.900	88	486	26 % G	[34]
	LD	No	1061.2	2.0	88.4	101	3.6 % ^D	[35]
							8.9% ^G	
Nd:CGA	LD	No	1079	3.1	157	93	4.8% A	[16]
							5.3% ^B	
Nd:CLTGG	LD	No	1059, 1061	3.5	42	383	6.8% ^G	[13]
Nd:CYA	LD	No	1080.2	3.9	148.9	2250	23.2% ^G	[14]
Nd: CTGG	LD	Prisms pairs	1059.6, 1063.5, 1064.9	4.3	88	-	-	[36]
		No	1059.6,1061.6, 1063.5, 1064.9	5.2	88	107	3.6 [%] G	
Nd:CNGG	LD	Prisms pairs	1059.35, 1061.71	5	88	90	1.6 [%] A	[37]
Nd , La: CaF_2	LD	No	1065.8	11	87.5	110	7.8% ^G	[23]
Nd : $CaNb_2O_6$	LD	No	1061.8	17.3	88.4	843	$27 \%^{\mathrm{D}}$	[38]

M and N: cutting directions of laser material; A: optical-optical conversion efficiency for incident pump power; B: slope efficiency for incident pump power; D: optical-optical conversion efficiency for absorbed pump power; G: slope efficiency for absorbed pump power; t: tune

由表 2 可知,实现 1 μm 波段超短脉冲运转时,输出激光波长情况主要有三种:单波长输出、双或多波长输出以及连续调谐输出,其中输出超短激光脉冲脉宽主要为皮秒量级和飞秒量级。

2.1 单波长输出

假设 Nd³⁺掺杂无序晶体激光器输出双曲正割形锁模脉冲,根据傅里叶变换关系式 $\Delta \tau \times \Delta v = 0.315$,其 中 $\Delta \tau$ 为脉冲宽度, Δv 为频谱宽度,0.315 为双曲正割形脉冲的时间带宽积极限值。理论上,Nd³⁺掺杂无序 晶体的荧光谱宽足以支持飞秒量级的锁模脉冲运转。但由表 2 可知,在单波长锁模激光器中,若不引入色散 补偿,通常只能产生皮秒量级脉冲。在现有的基于 Nd³⁺掺杂无序晶体的 1 µm 单波长飞秒被动锁模激光器 中,均采取了腔内色散管理。利用激光器实现 1 µm 单波长被动锁模运转时,锁模激光器的抽运方式、输出 波长、平均输出功率和效率、脉冲宽度等都是衡量激光器性能的重要指标。

目前,在基于 Nd³⁺ 掺杂无序晶体的 1 μm 单波长被动锁模激光器中,主要采用二极管激光器作为抽运 源,而钛宝石激光器由于价格昂贵较少用作抽运源。抽运源抽运波长大部分在 808 nm 附近,少部分在 790 nm附近^[20-23]。利用半导体可饱和吸收镜(SESAM)进行被动锁模具有自启动、结构简单、稳定可靠、光 束质量好等优点,实验都选用 SESAM 作为锁模元件。输出的激光波长在 1057~1084 nm 之间,大部分在 1064 nm 附近。Wei 等^[20]利用 Nd,Y:SrF₂晶体获得了 1057 nm 的飞秒锁模激光输出。Wang 等^[28]利用 Nd:LGS晶体获得了1084 nm 的飞秒锁模激光输出。Cong 等^[14]利用 Nd:CYA 晶体获得了1080.2 nm 的锁 模激光输出,该波长可用于抽运氦原子^[16]。

在基于 Nd³⁺掺杂无序晶体的 1 μm 单波长皮秒被动锁模激光器中,当吸收抽运功率小于等于 13 W 时, 获得的平均输出功率大部分在瓦量级以下,少数在瓦量级以上。Cong 等^[14]采用图 3(a)所示的实验装置,利 用 808 nm 二极管激光器抽运 Nd:CYA 晶体,其中 M1 为输入镜,M2 为高反镜,SESAM 为可饱和吸收体, L1 为 M1 和 M2 之间的距离,L2 为 M2 和 SESAM 之间的距离。当吸收抽运功率为 13 W 时,平均输出功 率为 2.25 W,这是目前利用 Nd³⁺掺杂无序晶体激光器实现 1 μm 皮秒单波长锁模脉冲运转的实验获得的最 高平均输出功率。图 3(b)为 Nd:CYA 激光器的输入输出特性曲线,其中 QML 表示调 Q 锁模,CW 表示连续。由图可以看到,利用 Nd:CYA 激光器获得的斜率效率(相对于吸收抽运功率)为 23.2%^[14]。到目前为止,利用 Nd³⁺掺杂无序晶体激光器实现 1 μm 皮秒单波长锁模脉冲运转的实验获得的最高光-光转换效率(相对于吸收抽运功率)为 27%^[38]。

图 3 (a) Nd:CYA 被动锁模激光器的实验装置; (b) 输出功率与吸收抽运功率的关系^[14] Fig. 3 (a) Experimental setup of Nd:CYA passively mode-locked laser; (b) relationship between output power and absorbed pump power^[14]

在基于 Nd³⁺ 掺杂无序晶体获得飞秒量级单波长脉冲的过程中,通常需要在谐振腔内引入色散补偿元 件,这在一定程度上增加了谐振腔损耗,降低了激光器输出功率。目前,基于 Nd³⁺ 掺杂无序晶体实现飞秒锁 模运转可获得的平均输出功率均小于 500 mW。2009 年,Xie 等^[34]利用 Nd: CLNGG 晶体获得的锁模平均 输出功率为486 mW。2014 年,Wei 等^[20]利用 796 nm 钛宝石激光器抽运 Nd,Y:SrF₂晶体,获得了脉宽为 332 fs 的锁模脉冲。图 4(a)为被动锁模 Nd,Y:SrF₂激光器的实验装置,其中 L 为透镜,M1 为输入镜,M2 和 M4 均为高反镜,M3 为 GTI 镜,M5 为可饱和吸收体,OC 为透射率为 1.6%的输出镜。采用单 GTI 镜补 偿腔内色散,输出镜的透射率为 1.6%。当抽运功率为 1 W 时,获得了 395 mW 的平均输出功率,相应的 光-光转换效率和斜率效率分别为 39.5%和 69%,这是目前利用 Nd³⁺掺杂无序晶体激光器实现 1 μ m 飞秒 单波长锁模脉冲运转的实验获得的最高光-光转换效率和斜率效率^[20]。图 4(b)为 Nd,Y:SrF₂锁模激光器 的输入输出特性曲线,其中 η_1 和 η_2 均为斜率效率。实验结果表明,Nd,Y:SrF₂晶体是一种可支持高效飞秒 锁模激光运行的增益介质,不仅具有较宽的吸收谱、荧光谱和较好的热特性,还具有中等发射截面和较长的 上能级寿命(吸收截面为 3.98×10⁻²⁰ cm²,发射截面为 4.36×10⁻²⁰ cm²,上能级寿命为 360 μ s)。因此, Nd,Y:SrF₂晶体是可通过啁啾脉冲放大(CPA)技术获得超短超强脉冲的激光增益介质^[20-22]。

图 4 (a) Nd, Y: SrF₂ 被动锁模激光器的实验装置; (b) 输出功率与抽运功率的关系^[20] Fig. 4 (a) Experimental setup of passively mode-locked Nd, Y: SrF₂ laser; (b) relationship between output power and pump power^[20]

目前,在基于 Nd³⁺掺杂无序晶体的 1 μm 被动锁模激光器中,获得的脉冲宽度在 0.097 ~17.3 ps 之间。 2013 年,Wang 等^[28]采用 X 型棱镜对色散进行补偿,实验装置如图 5 所示,其中 *f* 代表焦距,M1 为输入镜, M2 和 M3 均为高反镜,SESAM 为可饱和吸收体,SF6 为棱镜材料,M4 为输出镜。利用钛宝石激光器抽运 Nd:LGS 晶体,实现了飞秒量级被动连续锁模激光运转,脉冲重复频率为 102.4 MHz。当输出波长为 1084 nm时,锁模脉冲脉宽为 278 fs,当抽运功率为 2.76 W时,获得的平均输出功率为 21 mW;当输出波长 为 1067.5 nm 时,锁模脉冲脉宽为 335 fs,当抽运功率为 2.76 W时,获得的平均输出功率为 47 mW。

2014年,Qin 等^[21]采用图 6 所示的棱镜对进行色散补偿,其中 LD 为二极管抽运源, F_1 和 F_2 均为透镜, M1 为输入镜,M2 和 M3 均为高反镜,SF₁₀代表棱镜材料,OC 为输出镜。利用二极管激光器抽运 Nd,Y:CaF₂晶体,实现了飞秒量级 Nd,Y:CaF₂激光器的被动连续锁模运转。当抽运功率为 3.3 W 时,获得 的平均输出功率为 89 mW。

图 6 Nd,Y:CaF2被动锁模激光器的实验装置^[21] Fig. 6 Experimental setup of Nd,Y:CaF2 passively mode-locked laser^[21]

2016年,在高效 Nd,Y:SrF₂激光器^[20]的基础上,Zhu 等^[27]设计了图 7 所示的谐振腔,其中 M1 为输入 镜,M2 和 M3 均为高反镜,OC 为输出镜。获得了更短脉宽的被动连续锁模运转。与图 4(a)相比,该腔的改 进主要在于:1)使用双 GTI 镜控制色散,通过改变激光在 GTI 镜上的反射次数来改变腔内的总色散量,从 而较为精准地控制色散;2)晶体和 SESAM 的功率密度越高,越利于实现锁模,所以通过使用更小透射率 (0.3%)的输出镜以提高腔内脉冲功率,从而提高晶体和 SESAM 的功率密度;3)重新调整了腔参数,调整后 晶体中的振荡光光斑更小,更便于实现锁模。利用图 7 所示的实验装置,获得的锁模脉冲脉宽为 97 fs,这是 目前利用 Nd³⁺掺杂无序晶体激光器实现 1 μm 飞秒单波长锁模激光运转的实验获得的最窄脉宽。

图 7 Nd, Y: SrF₂ 被动锁模激光器的实验装置^[27]

Fig. 7 Experimental setup of Nd, Y:SrF2 passively mode-locked laser^[27]

上述几个典型的飞秒激光器均选用了 X 型腔,该类谐振腔的特点是设计灵活,易调节,可加入棱镜或 GTI镜,能实现单路锁模脉冲输出。

2016年,He 等^[16]采用典型的 X 型谐振腔,在未进行色散补偿的情况下,首次利用Nd:CaGdAlO₄晶体, 实现了 1079 nm 的锁模脉冲激光运转,锁模脉冲宽度为 3.1 ps,脉冲重复频率 157 MHz。当抽运功率为 1.94 W时,获得的最高锁模平均输出功率为 93 mW。

2015年,Liu 等^[30]采用X型谐振腔,在未进行色散补偿的情况下,首次利用二极管激光器抽运Nd:LGS 晶体,实现了1063 nm 的连续锁模脉冲激光运转,锁模脉冲宽度为10.9 ps,脉冲重复频率为173.3 MHz。当 抽运功率为1.91 W时,获得的最高锁模平均输出功率为28.5 mW。同年,Liu 等^[29]采用X型棱镜对色散补 偿腔,利用二极管激光器抽运Nd:LGS晶体,实现了1063 nm 的飞秒被动连续锁模脉冲激光运转,锁模脉冲脉宽 为381 fs,脉冲重复频率为133.4 MHz。当抽运功率为5.9 W时,获得的最高锁模平均输出功率为75 mW。 2015年,Zhu 等^[22]利用 Nd,Y:CaF₂晶体,采用双 GTI 镜进行色散补偿,获得了 264 fs 的连续被动锁模脉冲运转,脉冲重复频率为 85 MHz。当吸收的抽运功率为 2.5 W 时,获得的平均输出功率为 180 mW,这是目前利用 Nd,Y:CaF₂激光器实现 1 μm 飞秒被动连续锁模运转的实验获得的最高平均输出功率。图 8 为被动锁模 Nd,Y:CaF₂激光器的实验装置图,其中 M1 为输入镜,M2、M3 和 M4 均为高反镜,M5 和 M6 均为GTI 色散补偿镜,OC 为输出镜。

图 8 被动锁模 Nd,Y:CaF2激光器的实验装置^[22]

Fig. 8 Experimental setup of Nd, Y:CaF2 passively mode-locked laser^[22]

2.2 双或多波长输出

利用 Nd³⁺掺杂无序晶体激光器实现锁模运转,输出激光波长是双波长或多波长同时输出,即实现的是 双波长^[13,37]或多波长^[36]同步锁模运转。图 9^[39]为 Nd:CTGG 晶体的荧光谱和 Nd:CTGG 锁模激光器输出 的激光波长,可以看到,Nd:CTGG 晶体的荧光谱具有多峰结构,这种多峰结构来源于晶体结构的无序,它们 是多波长输出的原因。

图 9 (a)Nd:CTGG 晶体的荧光光谱;(b)锁模运转时输出的激光波长^[39]

Fig. 9 (a) Fluorescence spectrum of Nd:CTGG crystal; (b) output laser wavelength under mode-locking operation^[39]

由表 2 可知,在现有双波长或多波长 Nd³⁺掺杂无序晶体激光器中,即使在谐振腔内加入了色散补偿元件,仍只获得了皮秒量级锁模脉冲,未能实现飞秒量级锁模脉冲运转。2008年,Xie 等^[37]采用腔长为 1.7 m的 X 型双棱镜对色散补偿腔,利用 808 nm 波长的二极管激光器抽运 Nd:CNGG 无序晶体, 仅获得了脉宽为 5 ps 的基频锁模脉冲序列。

Nd³⁺掺杂无序晶体激光器在实现多波长皮秒同步锁模运转时,输出波长之间的间隔较小,如果选用合适的非线性元件,可通过差频技术产生太赫兹(THz)波。2009年,Xie等^[36]采用X型色散补偿腔,实现了皮秒量级三波长(1059.6,1063.5,1064.9 nm)同步锁模脉冲输出,若利用合适的非线性晶体,有望通过差频产生 0.4,1,1.4 THz 的波。

2.3 调谐输出

2013年,Agnesil等^[32]利用 Nd:SLG 晶体实现了 1060~1063 nm,1067~1070 nm,1078~1083 nm 波 段亚皮秒量级被动锁模脉冲的调谐运转。2014年,Agnesil等^[31]又利用 Nd:BLG 晶体实现了 1070~ 1090 nm波段亚皮秒量级被动锁模脉冲的调谐运转,当输出中心波长为 1075 nm 时,锁模脉冲宽度为290 fs。 图 10为 Nd:BLG 锁模激光器的实验装置图,其中 L 为透镜,M1 为输入镜,M2 和 M3 均为高反镜,SF10 为 棱镜材料,OC为输出镜,ML表示锁模,HR表示高反。图 11 为利用 Nd:BLG 激光器实现被动锁模运转时 输出的激光光谱图。

图 11 Nd:BLG 晶体的荧光谱和 Nd:BLG 激光器实现 被动锁模运转时输出的激光光谱图^[31]

Fig. 11 Fluorescence spectrum of Nd:BLG crystal and Nd:BLG laser spectrum under mode-locking operation^[31]

3 被动锁模实现 1.3 μm 和 0.9 μm 激光输出

2011年,Wang 等^[40]首次利用 Nd:LGS 晶体,实现了运转于准三能级波长的连续激光调谐输出。图 12 是 Nd:LGS 晶体在850~930 nm 之间的吸收谱和荧光谱^[40]。通过在谐振腔内加入厚度为 100 μm 的标准 具,实现了 899.8~906.6 nm 的连续可调谐激光输出。当输出激光波长为 904 nm、吸收抽运功率为2.5 W 时,激光输出功率为 403 mW,光-光转换效率为 16.1%,斜率效率为 29.7%。实验结果表明,通过优化实验 条件,有望利用无序晶体实现准三能级超短脉冲的运转。

图 12 Nd:LGS 晶体的吸收谱和荧光谱^[40]

4 结 论

Nd³⁺掺杂无序晶体具有宽的吸收谱和荧光谱以及优良的热性质,在产生超短脉冲激光方面以及应用 CPA 放大技术获得超强脉冲激光方面有较好的应用前景。Nd,Y:SrF₂晶体是目前唯一通过实验证实可产 生小于 100 fs 脉冲的 Nd³⁺掺杂无序晶体。因此,积极开发新的无序晶体或设法改善现有无序晶体的性能是 相关研究工作的方向。另外,基于同一种无序晶体在不同实验条件下实现 1 μm 飞秒被动锁模运转的报道 较少,因此,基于 Nd³⁺掺杂无序晶体的被动锁模研究也是相关研究的方向。

参考文献

- 1 Han S, Lu W, Sheh B Y, et al. Generation of sub-40 fs pulses from a mode-locked dual-gain-media Nd:glass laser[J]. Applied Physics B, 2002, 74(S1): S177-S179.
- 2 Kopf D, Kartner F X, Keller U, et al. Diode-pumped mode-locked Nd: glass lasers with an antiresonant Fabry-Perot

saturable absorber[J]. Optics Letters, 1995, 20(10): 1169-1171.

- 3 der Au J A, Kopf D, Morier-Genoud F, et al. 60 fs pulses from a diode-pumped Nd:glass laser[J]. Optics Letters, 1997, 22(5): 307-309.
- 4 Agnesi A, Pirzio F, Reali G. Low-threshold femtosecond Nd: glass laser[J]. Optics Express, 2009, 17(11): 9171-9176.
- 5 der Au J A, Loesel F H, Morier-Genoud F, *et al*. Femtosecond diode-pumped Nd:glass laser with more than 1 W of average output power[J]. Optics Letters, 1998, 23(4): 271-273.
- 6 Ober M H, Sorokin E, Sorokina I, et al. Subpicosecond mode locking of a Nd³⁺-doped garnet laser[J]. Optics Letters, 1992, 17(19): 1364-1366.
- 7 Sorokin E, Ober M H, Sorokina I, et al. Femtosecond solid-state lasers using Nd³⁺-doped mixed scandium garnets[J]. Journal of the Optical Society of America B, 1993, 10(8): 1436-1442.
- 8 Yu Haohai, Pan Zhongben, Zhang Huaijin, et al. Investigation of disordered laser crystals [J]. Bulletin of National Natural Science Foundation of China, 2015(4): 250-255.

于浩海,潘忠奔,张怀金,等.无序激光晶体研究进展[J].中国科学基金,2015(4):250-255.

- 9 Shi Z B, Fang X, Zhang H J, et al. Continuous-wave laser operation at 1.33 μm of Nd:CNGG and Nd:CLNGG crystals
 [J]. Laser Physics Letters, 2008, 5(3): 177-180.
- 10 He K N, Wei Z Y, Li D H, et al. Diode-pumped quasi-three-level CW Nd: CLNGG and Nd: CNGG lasers [J]. Optics Express, 2009, 17(21): 19292-19297.
- 11 Zhang B Y, Xu J L, Wang G J, et al. Diode-pumped passively mode-locked Nd:GYSGG laser[J]. Laser Physics Letters, 2011, 8(11): 787-790.
- 12 Naito K, Yokotani A, Sasaki T, et al. Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser[J]. Applied Optics, 1993, 32(36): 7387-7390.
- 13 Xu J L, Guo S Y, He J L, et al. Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal[J]. Applied Physics B, 2012, 107(1): 53-58.
- 14 Cong Z H, Tang D Y, Tan W D, et al. Diode-end-pumped Nd : CaYAlO₄ mode locked laser[J]. Optics Communications, 2011, 284(7): 1967-1969.
- 15 Lagatskii A A, Kuleshov N V, Shcherbitskii V G, et al. Lasing characteristics of a diode-pumped Nd³⁺ : CaGdAlO₄ crystal[J]. Quantum Electronics, 1997, 27(1): 15-17.
- 16 He K N, Liu J X, Wei L, et al. Diode-pumped passively mode-locked 1079 nm Nd:CaGdAlO₄ laser[J]. Chinese Physics Letters, 2016, 33(1): 014203.
- 17 Pan Z B, Zhang H J, Yu H H, et al. Growth and characterization of Nd-doped disordered Ca₃Gd₂ (BO₃)₄ crystal[J]. Applied Physics B, 2012, 106(1): 197-209.
- 18 Pan Z B, Cong H J, Yu H H, et al. Growth, thermal properties and laser operation of Nd: Ca₃La₂ (BO₃)₄: A new disordered laser crystal[J]. Optics Express, 2013, 21(5): 6098-6100.
- 19 Wang Qing. Novel all solid-state lasers and amplification of picosecond laser[D]. Beijing: University of Chinese Academy of Sciences, 2013: 23.

王 庆.新型全固态激光器及激光放大器及皮秒激光放大的实验研究[D].北京:中国科学院大学, 2013: 23.

- 20 Wei L, Han H N, Tian W L, et al. Efficient femtosecond mode-locked Nd, Y:SrF₂ laser[J]. Applied Physics Express, 2014, 7(9): 092704.
- 21 Qin Z P, Xie G Q, Ma J, *et al.* Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y: CaF₂ disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739.
- 22 Zhu J F, Zhang L J, Gao Z Y, et al. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF₂ laser[J]. Laser Physics Letters, 2015, 12(3): 035801.
- 23 Li C, Zhang F, Liu J, et al. Continuous-wave and mode-locked operation of a diode-pumped Nd, La: CaF₂ laser [J]. Optical Materials Express, 2015, 5(9): 1972-1978.
- 24 Wang C Q, Zhang H J, Meng X L, et al. Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd:Ca₄ YO(BO₃)₃ and Nd:Ca₄ GdO(BO₃)₃ crystals[J]. Journal of Crystal Growth, 2000, 220(1): 114-120.
- 25 Jensen T, Ostroumov V G, Meyn J P, et al. Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO₄[J]. Applied Physics B, 1994, 58(5): 373-379.
- 26 Hughes D W, Phillips M W, Barr J R M, et al. A laser-diode-pumped Nd:glass laser: Mode-locked, high power, and single frequency performance[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1010-1017.
- 27 Zhu J F, Wei L, Tian W L, et al. Generation of sub-100 fs pulses from mode-locked Nd, Y: SrF₂ laser with enhancing

SPM[J]. Laser Physics Letters, 2016, 13(5): 055804.

- 28 Wang Q, Wei Z Y, Liu J X, et al. Mode-locked Nd:LGS laser with femtosecond pulse duration[C]. 2013 Conference on Lasers and Electro-Optics Pacific Rim, 2013: ThA3_7.
- 29 Liu J X, Wang Z H, He K N, et al. Passively mode-locked femtosecond laser with an Nd-doped La₃ Ga₅ SiO₁₄ disordered crystal[J]. Optics Express, 2014, 22(22): 26933-26938.
- 30 Liu J X, Wang Z H, Tian W L, et al. Observation of self-frequency doubling in diode-pumped mode-locked Nd-doped La₃Ga₅SiO₁₄ laser[J]. Chinese Physics Letters, 2015, 32(1): 014206.
- 31 Agnesi A, Pirzio F, Tartara L, et al. Tunable femtosecond laser based on the Nd³⁺: BaLaGa₃O₇ disordered crystal[J]. Laser Physics Letters, 2014, 11(3): 035802.
- 32 Agnesi A, Pirzio F, Tartara L, et al. 378 fs pulse generation with Nd³⁺:SrLaGa₃O₇(Nd:SLG) disordered crystal[J]. Laser Physics Letters, 2013, 10(10): 105815.
- 33 Xie G Q, Qian L J, Yuan P, et al. Generation of 534 fs pulses from a passively mode-locked Nd: CLNGG-CNGG disordered crystal hybrid laser[J]. Laser Physics Letters, 2010, 7(7): 483-486.
- 34 Xie G Q, Tang D Y, Tan W D, et al. Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser[J]. Optics Letters, 2009, 34(1): 103-105.
- 35 Luo H, Tang D Y, Xie G Q, et al. Diode-pumped passively mode-locked Nd:CLNGG laser[J]. Optics Communications, 2009, 282(2): 291-293.
- 36 Xie G Q, Tang D Y, Tan W D, *et al*. Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser [J]. Applied Physics B, 2009, 95(4): 691-695.
- 37 Xie G Q, Tang D Y, Luo H, et al. Dual-wavelength synchronously mode-locked Nd:CNGG laser[J]. Optics Letters, 2008, 33(16): 1872-1874.
- 38 Xie G Q, Qian L J, Xu X D, et al. Diode-pumped passively mode-locked Nd: CaNb₂O₆ laser[J]. Laser Physics, 2010, 20 (6): 1331-1334.
- 39 Guo S Y, Yuan D R, Cheng X F, *et al.* Growth of a new laser crystal Nd³⁺ doped calcium tantalum gallium garnet by the Czochralski method[J]. Journal of Crystal Growth, 2008, 310(22): 4685-4688.
- 40 Wang Q, Wei Z Y, Zhang Y D, *et al*. Tunable continuous wave laser at quasi-three-level with a disordered Nd:LGS crystal[J]. Optics Letters, 2011, 36(10): 1770-1772.